... prepare a statement, lest you get caught unawares and make some foolish but unfortunately common statement, as in the following case.

At the end of an interview with a survivor of the train wreck in Galicia, after the survivor had described the chaos and panic and described hearing victims and seeing a trapped friend, the interviewer asked her, "How do you feel at having survived?". The survivor would have been justified in decking the journalist, or if she really wanted to respond with banalities, she could have said, "Numb." or "Shocked." or "I don't know what to think." or "It was so recent, there is so much turmoil inside me, I don't know what I feel."

Instead, her response was the all too common, "Thanks be to God! A miracle!"

If you don't have problems with that statement, you have rocks in your head. Now, since she is from a good little culturally Catholic country, we can safely assume she meant "miracle" and not "Miracle". But what was the miracle? That 300+ survived? That 80 people died? That only 80 people died? That 80 people died and she was one of the 300 odd survivors? That her God made the right choice in deciding which people to off and which ones to save? That this was a sign that she is special, and that as a corollary, the victims were not? That the families of the survivors should take consolation that they were simply the necessary collateral damage from the miracle? after all if every one had survived or everyone had died then there would have been no miracle.

Or perhaps the miracle is that her god tolerates such lack of humility and empathy with the victims.

## Thursday, July 25, 2013

## Tuesday, July 2, 2013

### Solutions: Shortest distance between two skew lines in 3D

See the previous post for the question.

**U**mode: there are only 4 given things, two (

**n1**and

**n2**) are already vectors, each tangent to its line. From the other two things, construct the difference,

**d**=

**C1**–

**C2**, which is a vector joining the two lines. Since the tangent vectors may be parametrization dependent, which we don't want, perhaps they have to be normalized.

Then
the shortest distance has to be proportional to |

**d****·n****1****X****n****2**|. The simplest way to determine the proportionality constant would be to do it for some test cases: pairing in each case the x-axis (s, 0, 0) with one of: (0, s, 0), (s, 1, 0), (0, s, 1), (s, s, 1) etc. and for different choices of points along the lines.
BTW
the conjectured formula fails for one of the above, even though the
shortest distance is well-defined. From the computational geometry
point of view, the formula is computationally fragile in that is
certain special cases it will be very sensitive to machine precision
rounding errors.

**I**mode: The shortest distance between the two lines has to be the length of a segment perpendicular to both. (Why?) Hence that line segment has to be parallel to

**S**=

**n**

**1**

**X**

**n**

**2**, and the distance between the two given lines is the length of that line segment

**.**

How
do we find its length if we don't even know where it lies?

We
could, in

**M**-mode, find that line by doing all sorts of stuff requiring that it intersect**L1**and**L2**, then finding its intersection points and finally the distance between them.
Or,
in

**U**-mode, we could notice that the projection onto the unit vector**s = S**/|**S**| -of a segment joining any two points one each on the two original lines- is exactly the length of the shortest segment. How so? The line joining any two points one each on the original lines is a linear combination of**s**,**n1**and**n2**. So projecting it onto**s**, since**s****┴****n1**and**s**┴**n2**, will yield exactly its component along**s**, which is*d*. I know this sounds as if I've been going around in circles, but what all the above means is that we can take any two arbitrary points on**L1**and**L2**, say**C1**and**C2**, and calculate
d
= |(

**C1**–**C2**)•**s**|.
This
yields the proportionality constant we were looking for in

**U**mode, the reciprocal of the norm of**S**.
Another
way of thinking about the solution in

**I**mode is that the answer we are looking for is the distance between two parallel planes each of which contains one of the given lines.
Labels:
geometry,
JEE,
math,
modes of thought

Subscribe to:
Posts (Atom)